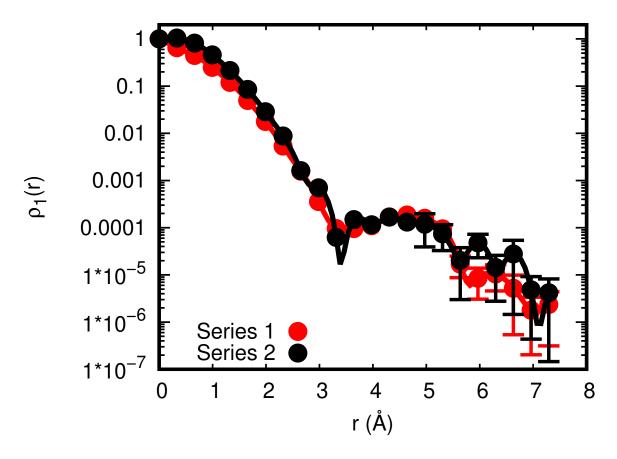
Supplemental Material for: "Absence of off-diagonal long-range order in hcp ⁴He dislocation cores"

Maurice de Koning

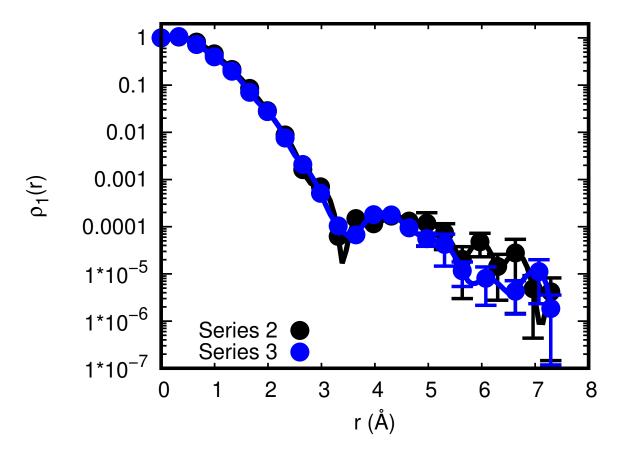
Instituto de Física "Gleb Wataghin",
Universidade Estadual de Campinas, UNICAMP,
13083-859, Campinas, São Paulo, Brazil and
Center for Computing in Engineering & Sciences,
Universidade Estadual de Campinas, UNICAMP,
13083-861, Campinas, São Paulo, Brazil*

Wei Cai

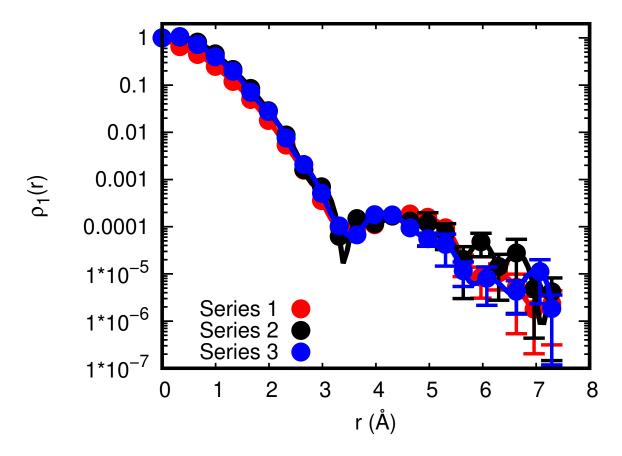
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4040[†]


Claudio Cazorla and Jordi Boronat

Departament de Física, Universitat Politècnica de Catalunya,


Campus Nord B4-B5, 08034 Barcelona, Spain[‡]

Abstract


In this Supplemental Material document, we provide the results of several technical tests performed on the convergence of the one-body density matrix function, ρ_1 , calculated at zero temperature with the path-integral Monte Carlo (PIGS) method. In particular, we provide explicit comparison between several ρ_1 results obtained by using different numbers of time slices (or "beads"), M, and imaginary time steps, τ . Overall, the results of our technical tests demonstrate that the ρ_1 values enclosed in Figure 2 of the main text are well-converged with respect to the technical parameters M and τ .

Supplementary Figure 1: PIGS one-body density matrix results obtained at zero temperature for hcp ⁴He containing an edge dislocation with the Burgers vector oriented along the c-axis (CE). The y-axis is in logarithmic scale. The number of times slices and imaginary time step employed in "Series 1" are M = 25 and $\tau = 0.0125$ K⁻¹ while in "Series 2" are M = 40 and $\tau = 0.0125$ K⁻¹. The ρ_1 results obtained in both series are consistent with each other within their statistical errors thus the ρ_1 results enclosed in Figure 2 of the main text (corresponding to "Series 1") are demonstrated to be well-converged with respect to the technical parameter M. In all the cases, an exponential ρ_1 decay is observed at long distances.

Supplementary Figure 2: PIGS one-body density matrix results obtained at zero temperature for hcp ⁴He containing an edge dislocation with the Burgers vector oriented along the c-axis (CE). The y-axis is in logarithmic scale. The number of times slices and imaginary time step employed in "Series 2" are M = 40 and $\tau = 0.0125$ K⁻¹ while in "Series 3" are M = 40 and $\tau = 0.00625$ K⁻¹. The ρ_1 results obtained in the two series are consistent with each other within their statistical errors thus the ρ_1 results enclosed in Figure 2 of the main text (obtained with $\tau = 0.0125$ K⁻¹) are demonstrated to be well-converged with respect to the technical parameter τ . In all the cases, an exponential ρ_1 decay is observed at long distances.

Supplementary Figure 3: PIGS one-body density matrix results obtained at zero temperature for hcp 4 He containing an edge dislocation with the Burgers vector oriented along the c-axis (CE). The y-axis is in logarithmic scale. The number of times slices and imaginary time step employed in "Series 1" are M=25 and $\tau=0.0125$ K⁻¹ while in "Series 2" are M=40 and $\tau=0.0125$ K⁻¹ and in "Series 3" are M=40 and $\tau=0.00625$ K⁻¹. The ρ_1 results obtained in all the series are consistent with each other within their statistical errors thus the ρ_1 results enclosed in Figure 2 of the main text (corresponding to "Series 1") are demonstrated to be well-converged with respect to both technical parameters M and τ . In all the cases, an exponential ρ_1 decay is observed at long distances.

^{*} Electronic address: dekoning@unicamp.br

[†] Electronic address: caiwei@stanford.edu

[‡] Electronic address: jordi.boronat@upc.edu