

## Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.202201469

Converting Brownmillerite to Alternate Layers of Oxygen-Deficient and Conductive Nano-Sheets with Enhanced Thermoelectric Properties

Songbai Hu, Wenqiao Han, Xiaowen Li, Mao Ye, Yao Lu, Cai Jin, Qi Liu, Junling Wang, Jiaqing He, Claudio Cazorla, Yuanmin Zhu,\* and Lang Chen\*

## Supporting Information

Converting brownmillerite to alternate layers of oxygen-deficient and conductive nano-sheets with enhanced thermoelectric properties

Songbai Hu, Wenqiao Han, Xiaowen Li, Mao Ye, Yao Lu, Cai Jin, Qi Liu, Junling Wang, Jiaqing He, Claudio Cazorla, Yuanmin Zhu\*, Lang Chen\*



Figure S1. XRD in-plane phi-scan for SCO10, SCO9 and SCO8 along RS (110) and  $CoO_2(01\overline{1}0)$  directions.



Figure S2. XRD in-plane  $\theta$ -2 $\theta$  scans for SCO10, SCO9 and SCO8 along LSAT (110) direction.



Figure S3. The in-plane epitaxial relationships between (a) SCO10, (b) SCO9 and (c) SCO8 thin films and the LSAT substrate. The dashed arrows depict the rotatory counterparts of the rock salt  $Sr_2O_2(SrO)/Sr_2CoO_3(SrCoO)$  layer.



**Figure S4**. Fast flourier transformation (FFT) of the (a) SCO9 (110) atomic plane and (b) SCO8 (110) plane.



**Figure S5**. XAS of Co *L*-edge and O *K*-edge for vacuum or 10 bar O<sub>2</sub> annealed SCO10 thin films. The XAS near Co *L*-edge confirmed the presence of Co<sup>2+</sup> in vacuum-annealed SCOH thin film as seen the peak splitting near 780 eV. As the Co<sup>2+</sup> was oxidized to Co<sup>3+</sup> in 10 bar O<sub>2</sub>, the Co<sup>2+</sup> splitting in the left panel was highly suppressed. Correspondingly, a clear bump at 530 eV was detected in the O *K*-edge spectrum for vacuum annealed SCO10. However, this bump was undetectable in the 10 bar O<sub>2</sub> annealed sample. Therefore, the bump represents the electronic transition from a O 2*p* state to the half-filled  $a_{1g}$  state of the hybridized orbital Co<sup>II</sup> 3*d*-O 2*p* in oxygen deficient SCO10.



**Figure S6**. Carrier concentration  $(n_p)$  of SCO10, SCO9 and SCO over the temperature interval 10 K ~ 400 K.



Figure S7. Reported normalized power density for  $Bi_2Te_3$ -based thermoelectric films in (a) reference [40] and (b) reference [41] of main text. The light-blue bar dictates the range span for our SCO9 thin film.

Reproduced with permission<sup>[40]</sup>. Copyright 2022, Elsevier. Reproduced with permission<sup>[41]</sup>, Copyright 2019, Royal Society of Chemistry.



**Figure S8**. (110) atomic plane for (a) SCO10, (b) SCO9 and (c) SCO8 and (100) atomic plane for (d) SCO10, (e) SCO9 and (f) SCO8



**Figure S9.** The plots of  $-V_{in}/V_{out}$  vs. delay time for SCO thin films at different temperature obtained from TDTR. The experiment raw data, curves fitted with optimum and 10% uncertainties of  $\kappa$  were represented by open circles, solid lines and dash lines, respectively.

|                                                                                  | $\rho$ [m $\Omega$ cm] | $S[\mu VK^{-1}]$ | $PF[10^{-4} \text{ WK}^{-2}\text{m}]$ | Ref.     |
|----------------------------------------------------------------------------------|------------------------|------------------|---------------------------------------|----------|
| Ca <sub>3</sub> Co <sub>4</sub> O <sub>9</sub> (thin film)                       | 14.2                   | 200              | 2.8                                   | [1]      |
| $Ca_3Co_4O_9$ (powder)                                                           | 12.6                   | ~92              | 0.67                                  | [2]      |
| $Ca_3Co_4O_9$ (crystal)                                                          | 11                     | ~125             | 1.4                                   | [3]      |
| $Ca_2Co_2O_5$                                                                    | 1.4                    | 137              | 13.4                                  | [4]      |
| Sr <sub>3</sub> Co <sub>4</sub> O <sub>9</sub>                                   | 2.5                    | 95               | 3.6                                   | [5]      |
| Ge doped $[Sr_2CoO_3][CoO_2]_{1.8}$                                              | 130                    | ~110             | 0.09                                  | [6]      |
| NaCo <sub>2</sub> O <sub>4</sub>                                                 | 0.2                    | 100              | 50                                    | [7]      |
| Nb doped SrTiO <sub>3</sub>                                                      | 5.9                    | -97              | 1.6                                   | [8]      |
| La doped SrTiO <sub>3</sub>                                                      | 1                      | -150             | 23                                    | [9]      |
| Sr <sub>3</sub> Ti <sub>2</sub> O <sub>7</sub>                                   | 5.1                    | -86              | 1.5                                   | [8]      |
| $Zn_{0.95}Al_{0.05}O$                                                            | ~52                    | ~-170            | 15                                    | [10, 11] |
| $(ZnO)_5In_2O_3$                                                                 | 0.065                  | -9.6             | 1.4                                   | [12]     |
| Bi <sub>2</sub> Te <sub>3</sub>                                                  | 1                      | 200              | 40                                    | [7]      |
| Sb <sub>2</sub> Te <sub>3</sub>                                                  | 0.36                   | 135              | 52                                    | [13]     |
| BM-SrCoO <sub>2.5</sub>                                                          | 13438                  | 112              | 0.0009                                | Our work |
| [Sr <sub>2</sub> O <sub>2</sub> H <sub>2</sub> ] <sub>0.5</sub> CoO <sub>2</sub> | 1.74                   | 128              | 9.4                                   | Our work |
| [Sr <sub>2</sub> O <sub>2</sub> ] <sub>0.4</sub> CoO <sub>2</sub>                | 0.27                   | 98               | 35.7                                  | Our work |
| [Sr <sub>2</sub> CoO <sub>3</sub> ] <sub>0.57</sub> CoO <sub>2</sub>             | 0.37                   | 90               | 21.9                                  | Our work |

**Table S1.** Resistivity ( $\rho$ ), Seebeck coefficient (S) and power factors (*PF*) of several thermoelectrical materials near room temperature

References

[1] B. Paul, E. M. Bjork, A. Kumar, J. Lu, P. Eklund, ACS Appl. Energy Mater. 2018, 1, 2261.

[2] S. W. Li, R. Funahashi, I. Matsubara, K. Ueno, H. Yamada, J. Mater. Chem. 1999, 9, 1659.

[3] A. C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, J. Hejtmanek, *Phys. Rev. B* 2000, **62**, 166.

[4] R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, S. Sodeoka, Jpn. J. Appl. Phys., Part 2 2000, **39**, L1127.

[5] A. Sakai, T. Kanno, S. Yotsuhashi, A. I. Odagawa, H. Adachi, Ieee, "Preparation and anisotropic thermoelectric properties in misfit cobaltite thin films", presented at *24th International Conference on Thermoelectrics (ICT)*, Clemson, SC, Jun 19-23, 2005.

[6] D. Pelloquin, S. Hébert, A. Maignan, B. Raveau, Solid State Sci. 2004, 6, 167.

[7] I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 1997, 56, 12685.

[8] K. Koumoto, I. Terasaki, R. Funahashi, MRS Bull. 2006, 31, 206.

[9] S. Ohta, T. Nomura, H. Ohta, K. Koumoto, J. Appl. Phys. 2005, 97.

[10] M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, J. Appl. Phys. 1996, 79, 1816.

[11] T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai, J. Mater. Chem. 1997, 7, 85.

[12] H. Ohta, W. S. Seo, K. Koumoto, J. Am. Ceram. Soc. 1996, 79, 2193.

[13] S. Shen, W. Zhu, Y. Deng, H. Zhao, Y. Peng, C. Wang, Appl. Surf. Sci. 2017, 414, 197.

|       | Hot plate setup<br>[°C] | $T_{high}$ [°C] | $T_{low}$ [°C] | $\begin{bmatrix} T_{high} - T_{low} \\ [K] \end{bmatrix}$ | $\Delta T$ estimated by $V_{oc}/S$ [K] |
|-------|-------------------------|-----------------|----------------|-----------------------------------------------------------|----------------------------------------|
| SCO10 | 50                      | 41              | 31             | 12                                                        | 14                                     |
|       | 70                      | 51              | 36             | 15                                                        | 18                                     |
|       | 90                      | 59              | 38             | 21                                                        | 23                                     |
| SCO9  | 50                      | 41              | 29             | 12                                                        | 14                                     |
|       | 70                      | 53              | 34             | 19                                                        | 21                                     |
|       | 90                      | 65              | 40             | 25                                                        | 28                                     |
| SCO8  | 50                      | 46              | 32             | 14                                                        | 17                                     |
|       | 70                      | 56              | 34             | 22                                                        | 24                                     |
|       | 90                      | 70              | 40             | 30                                                        | 33                                     |

**Table S2**.  $T_{high}$  and  $T_{low}$  during the output power measurement.