Supporting Information

Enhanced pH-universal hydrogen evolution reactions on the Ru/a-Ni-MoO₃ electrocatalysts

Lingyi Peng,^a Ding Zhang,^a Zhipeng Ma,^a Dewei Chu,^b Claudio Cazorla,^c Rose Amal,^a

Zhaojun Han,^{a, d, *}

a School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

b School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

c Department of Physics, Polytechnic University of Catalonia (UPC), C/ Jordi Girona 1-3,

Campus Nord, B4-203 08034 Barcelona, Spain

d CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW 2070, Australia

Corresponding authors email:

zhaojun.han@unsw.edu.au (Z. Han)

Figure S1. Polarization curves in 1 M KOH after immersion of NiMoO₄-R in 1 mg/ml RuCl₃ solution for (a) 0–4 h, (b) 4–22 h and (c) 22-24 h. The activity increased within the first 4 h due to the Ru deposition, slightly decreased afterwards likely owing to the dissolution of residual unstable Ni species and stabilized after 22 h.

Figure S2. XRD patterns of ACC, (a) NiMoO₄ on ACC, (b) NiMoO₄-R on ACC, and (c) Ru/*a*-Ni-MoO₃ on ACC. It should be noted that the Ru peaks in Ru/*a*-Ni-MoO₃ were overlapped with the peaks of ACC.

Figure S3. Selected-area electron diffraction patterns of (a) NiMoO4, (b) NiMoO4-R, and (c)

Ru/a-Ni-MoO₃.

Figure S4. Scanning transmission electron microscopy-energy dispersive X-ray spectroscopy

images of NiMoO₄-R.

Figure S5. (a) Size distribution histogram of Ru nanoparticles in Ru/a-Ni-MoO₃; (b) typical TEM image of Ru/a-Ni-MoO₃ showing the measured sizes of Ru nanoparticles; (c) high magnification TEM image showing the lattice spacing assigned to Ru.

Figure S6. Typical TEM image of Ru/*a*-Ni-MoO₃ showing the crevices and possible

mesopores among the Ru nanoparticles.

Figure S7. The evolutions of Ni, Ru, and Mo concentrations in the immersion solution obtained by ICP-OES. The rapid change in Ni and Ru concentrations within the first 4 h was due to the redox reaction between Ru³⁺ and the metallic Ni in NiMoO₄-R; beyond 4 h the slight increase in Ni concentration was due to dissolution of unstable Ni species, while the decrease in Ru concentration was caused by hydrolysis.

Figure S8. STEM-EDS spectrum and quantitative elemental analysis of Ru/a-Ni-MoO₃.

Figure S9. High-resolution XPS Ru 3d spectra of Ru/C and Ru/a-Ni-MoO₃.

Figure S10. High-resolution XPS Ni $2p_{3/2}$ spectra of NiMoO₄-R and Ru/a-Ni-MoO₃.

Figure S11. Ultraviolet photoelectron spectroscopy (UPS) (a) survey and (b) Fermi edge spectra of Ru/C and Ru/a-Ni-MoO₃.

Figure S12. Cyclic voltammetry (CV) curves of (a) Ru/C, (b) Ru/a-Ni-MoO₃, and (c) Pt/C in the non-Faradaic regions in 0.5 M H₂SO₄; (d) plots of Δj/2 (the mean value of absolute current density value at the middle point of positive and negative scans in the CV curves) versus scan rate.

Figure S13. Electrochemical surface area (ECSA) normalized polarization curves of Ru/C, Ru/*a*-Ni-MoO₃, and Pt/C in 0.5 M H₂SO₄; scan rate: 5 mV/s.

Figure S14. EIS spectra of Ru/C, Ru/*a*-Ni-MoO₃, and Pt/C under an overpotential of -71 mV in 0.5 M H₂SO₄. Inset shows the equivalent circuit model.

Figure S15. EIS spectra of Ru/a-Ni-MoO₃ under different overpotentials in 0.5 M H₂SO₄.

Figure S16. CV curves of (a) Ru/C, (b) Ru/a-Ni-MoO₃, and (c) Pt/C in the non-Faradaic regions in 1 M KOH; (d) plots of Δj/2 (the mean value of absolute current density value at the middle point of positive and negative scans in the CV curve) versus scan rate.

Figure S17. ECSA-normalized polarization curves of Ru/C, Ru/*a*-Ni-MoO₃, and Pt/C in 1 M KOH; scan rate: 5 mV/s.

Figure S18. EIS spectra of Ru/C, Ru/*a*-Ni-MoO₃, and Pt/C under an overpotential of -75 mV in 1 M KOH. Inset shows the equivalent circuit model.

Figure S19. EIS spectra of Ru/a-Ni-MoO₃ at overpotentials of -75 and -85 mV in 1 M KOH.

Figure S20. CV curves of (a) Ru/C, (b) Ru/a-Ni-MoO₃, and (c) Pt/C in the non-Faradaic regions in 1 M PBS; (d) plots of Δj/2 (the mean value of absolute current density value at the middle point of positive and negative scans in the CV curve) versus scan rate.

Figure S21. ECSA-normalized polarization curves of Ru/C, Ru/a-Ni-MoO₃, and Pt/C in 1 M

PBS; scan rate: 5 mV/s.

Figure S22. Tafel plots of Ru/C, Ru/a-Ni-MoO₃, and Pt/C at large overpotentials in 1 M

PBS.

Figure S23. EIS spectra of Ru/C, Ru/a-Ni-MoO₃, and Pt/C under an overpotential of -57 mV

in 1 M PBS.

Figure S24. Experimentally measured H_2 production amounts on Ru/a-Ni-MoO₃ and the theoretically calculated values with electrolysis time in (a) 0.5 M H₂SO₄, (b) 1 M KOH, and

(c) 1 M PBS; applied cathodic current density: 20 mA/cm².

Figure S25. Comparison of polarization curves in 0.5 M H₂SO₄ before and after acid washing of (a) NiMoO₄-R and (b) Ru/*a*-Ni-MoO₃. Scan rate: 5 mV/s.

Figure S26. Polarization curves of Ru/*a*-Ni-MoO₃ and *a*-Ni-MoO₃ in (a) 0.5 M H₂SO₄, (b) 1 M KOH, and (c) 1 M PBS. Scan rate: 5 mV/s.

	Ni	Мо	Ru
Metal element weight ratio on ACC (%)	0.4	0.96	2.8
Metal element loading on ACC (mg/cm ²)	0.05	0.12	0.35
Metal element relative atomic ratio (%)	15.30	22.47	62.22

Table S1. ICP-MS measurement results of Ru/a-Ni-MoO3 on ACC based on an averagedensity of 12 mg/cm² for ACC.

		Ru/C	Ru/ <i>a</i> -Ni-MoO ₃
	Binding energy (eV)	462.44	462.97
Ru(IV) 3p 3/2	Percentage of peak (%)	76.05	76.05
Du(1)() 2m 2/2 cot	Binding energy (eV)	465.34	465.87
Ru(IV) 3p 3/2 Sat.	Percentage of peak (%)	23.95	23.95
	Binding energy (eV)	280.76	281.2
Ru(IV) 3d5/2	Percentage of peak (%)	28.41	27.47
Ru(IV) 3d 3/2	Binding energy (eV)	284.93	285.37
	Percentage of peak (%)	19.03	18.41
Ru(IV) 3d 5/2 sat.	Binding energy (eV)	282.66	283.1
	Percentage of peak (%)	13.41	10.56
	Binding energy (eV)	286.83	287.27
Ru(IV) 3d 3/2 sat.	Percentage of peak (%)	8.98	7.08
C	Binding energy (eV)	284.45	284.51
C	Percentage of peak (%)	30.17	36.48

Table S2. Quantitative XPS analyses of Ru chemical states in Ru/C and Ru/a-Ni-MoO₃.

Table S3. Quantitative XPS analyses of Ni and Mo chemical states in NiMoO₄-R and Ru/*a*-Ni-MoO₃.

		NiMoO ₄ -R	Ru <i>∕a</i> -Ni-MoO₃
Ni (II)	Binding energy (eV)	856.13	855.67
	Percentage of peak (%)	76.94	100
Ni (0)	Binding energy (eV)	852.75	N/A
	Percentage of peak (%)	23.06	0
	Binding energy (eV)	235.59	235.4
1010(01) 50 5/2	Percentage of peak (%)	14.15	21.12
	Binding energy (eV)	232.49	232.3
1010(01) 30 5/2	Percentage of peak (%)	21.23	31.69
Mo(VI)	Percentage of peak (%)	35.38	52.81
Mo(V) 3d 3/2	Binding energy (eV)	233.84	234.39
	Percentage of peak (%)	11.46	13.09
	Binding energy (eV)	230.74	231.29
1010(0) 50 572	Percentage of peak (%)	17.18	19.64
Mo(V)	Percentage of peak (%)	28.64	32.73
	Binding energy (eV)	232.78	233
WO(IV) 30 3/2	Percentage of peak (%)	14.39	5.78
	Binding energy (eV)	229.68	229.9
1010(17) 30 5/2	Percentage of peak (%)	21.59	8.67
Mo(IV)	Percentage of peak (%)	35.98	14.45

Table S4. Applied potentials and recorded current densities in chronoamperometry stability test of Ru/C, Ru/*a*-Ni-MoO₃, and Pt/C in different media.

		Applied potential (V vs RHE)	Starting current density (mA/cm ²)	Current density after 14 h (mA/cm ²)	Current retention after 14 h (%)
	Ru/C	-0.202	-55.21	-33.55	60.77
0.5 M H₂SO₄	Ru/a-Ni-MoO ₃	-0.174	-50.84	-43.49	85.54
	Pt/C	-0.159	-51.15	-35.68	69.76
	Ru/C	-0.159	-53.85	-52.09	96.73
1 М КОН	Ru/a-Ni-MoO ₃	-0.149	-49.6	-48.3	97.38
	Pt/C	-0.129	-51.46	-39.51	76.78
1 M PBS	Ru/C	-0.087	-10.96	-4.633	42.27
	Ru/a-Ni-MoO ₃	-0.07	-10.83	-3.428	31.65
	Pt/C	-0.026	-10.98	-10.95	99.73

Table S5. Equivalent circuit parameters obtained from EIS spectra fitting of Ru/C, Ru/a-Ni-

 MoO_3 , and Pt/C in electrolytes with different pH values. In the models, R_s is the solution resistance, R_{ct} and CPE_{dl} are the resistance and constant phase element (CPE) associated with charge transfer, while R_1 and CPE_1 are the corresponding components for the porosity of the electrode. CPE is defined by two values, CPE-T (CPE constant) and CPE-P (CPE exponent).

		Rs	R _{ct}	CPE _{dl} -T	CPE _{dl} -P	R1	CPE ₁ -T	CPE ₁ -P
0.5 M H₂SO₄	Ru/C	2.06	2.751	0.019508	0.73804	0.010844	0.000159	1.524
	Ru/a-Ni-MoO ₃	1.918	0.64428	4.417	0.90331	0.31981	0.098203	0.70896
	Pt/C	1.982	0.67561	0.6763	0.71688	0.060196	0.008804	1.028
1 М КОН	Ru/C	2.002	1.329	0.056254	0.68516			
	Ru/a-Ni-MoO₃	2.037	0.19415	0.16025	0.68019	0.41285	5.047	0.83761
	Pt/C	1.909	0.89953	0.15007	0.50875			
1 M PBS	Ru/C	2.891	2.518	0.25564	0.69134	1.38	0.017655	0.7993
	Ru/ <i>a</i> -Ni-MoO₃	2.912	1.969	1.772	0.73785	0.17285	0.091408	0.78103
	Pt/C	3.047	1.416	0.48969	0.66668	0.12723	0.018787	0.91748

Table S6. Measured H₂ production amounts, theoretically calculated values, and Faraday efficiencies of Ru/*a*-Ni-MoO₃ in different media; applied cathodic current density: 20

	Time (s)	900	1800	2700	3600	
0.5 M H ₂ SO ₄	Measured amount (µmol)	84.3	183.3	264.4	361.2	
	Theoretical amount (µmol)	93.3	186.5	279.8	373.1	
	Faraday efficiency (%)	90.4	98.3	94.5	96.8	
1 М КОН	Time (s)	900	1800	2700	3600	4500
	Measured amount (µmol)	68.5	173.5	278.6	329.4	455.3
	Theoretical amount (µmol)	93.3	186.5	279.8	373.1	466.3
	Faraday efficiency (%)	73.4	93.0	99.6	88.3	97.6
	Time (s)	900	1800	2700	3600	
1 14 000	Measured amount (µmol)	98.2	183.2	281.0	368.9	
1 M PBS	Theoretical amount (µmol)	93.3	186.5	279.8	373.1	
	Faraday efficiency (%)	105.3	98.2	100.4	98.9	

mA/cm².