Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Annex 1: Absorption model used to fit the PDS spectra

The α -d spectra (**Figure 4**a) has been fitted using the following equations of the Urbach-Tauc combined model,

for
$$E < E_1 \rightarrow \alpha_{1,Urbach} = \alpha_0 \cdot exp\left(\frac{E}{E_U}\right)$$

for $E > E_1 \rightarrow \alpha_{2,Tauc} = \beta \cdot \frac{\sqrt{E - E_g}}{E}$

where *E* is the energy (*hv*), E_g is the bandgap, E_U is the Urbach energy, α_0 and β are constants of the model, and E_1 is a transition energy near the optical bandgap where the following boundary conditions must be fulfilled,

$$\alpha_{1,Urbach}(E_1) = \alpha_{2,Tauc}(E_1)$$
$$\frac{d\alpha_{1,Urbach}}{dE}(E_1) = \frac{d\alpha_{2,Tauc}}{dE}(E_1)$$

Once the value of E_1 is determined, the system of equations is solved, which determines the value of the direct bandgap (E_a).

Annex 2: Additional figures and tables

Figure S1: GIXRD patterns of samples prepared with AgBr and TU (1:2) dissolved in DMF. Samples were prepared following this procedure: dissolution of AgBr and TU precursors in DMF to obtain a 0.5 M solution; deposition of solution by drop-casting on Mo-coated glass substrate; drying at 50°C using hot-plate; annealing at temperatures between 200°C-400°C using a hot-plate under N₂ atmosphere

Figure S2: Experimental (red points) and Le Bail (black) refined patterns, along with the difference profile (blue curve) and Bragg reflections (green sticks) of Ag₃S(Br_xI_{1-x}) anti-perovskite samples

x	Vol. (ų)	Cell p. (Å)	X
1	110.61	4.800	1.43
0.7	112.70	4.830	1.80
0.5	113.97	4.849	1.73
0.3	114.74	4.859	2.03
0	121.42	4.952	1.37

Table S1: Cell volume and parameters of $Ag_3S(Br_xI_{1-x})$ samples. Calculated from Le Bail refinement using the
FullProf suite software

Figure S3: SEM and EDX micrographs of an FTO/Ag₃SBr sample

Figure S4: Absorption (α ·d) spectra of Ag₃S(Br_xI_{1-x}), measured with PDS. a) x=0.7 b) x=0.5 c) x=0.3

х	Urbach energy (meV)
1	287
0.7	251
0.5	283
0.3	192
0	285

Table S2: Urbach energies of Ag₃S(Br_xI_{1-x}) samples. Calculated from PDS measurements

Figure S5: Total and projected density of electronic states calculated for Ag₃SBr and Ag₃SI with firstprinciples DFT methods. The largest contribution to the top of the valence band and bottom of the conduction band stem from the electronic Ag orbitals.

Figure S6: Refractive index (*n*), extinction coefficient (κ), absorption coefficient (α), and reflectivity (*R*) estimated as a function of the incident photon energy